首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   951篇
  免费   21篇
  国内免费   17篇
  2023年   2篇
  2022年   5篇
  2021年   9篇
  2020年   6篇
  2019年   9篇
  2018年   13篇
  2017年   10篇
  2016年   19篇
  2015年   39篇
  2014年   88篇
  2013年   75篇
  2012年   88篇
  2011年   117篇
  2010年   107篇
  2009年   36篇
  2008年   33篇
  2007年   42篇
  2006年   47篇
  2005年   33篇
  2004年   20篇
  2003年   14篇
  2002年   12篇
  2001年   8篇
  2000年   7篇
  1999年   13篇
  1998年   13篇
  1997年   8篇
  1996年   8篇
  1995年   18篇
  1994年   9篇
  1993年   5篇
  1992年   5篇
  1991年   9篇
  1990年   2篇
  1989年   4篇
  1988年   7篇
  1987年   6篇
  1986年   2篇
  1985年   4篇
  1984年   10篇
  1983年   7篇
  1982年   11篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有989条查询结果,搜索用时 281 毫秒
1.
2.
The extracellular matrix (ECM) in tissues is synthesized and assembled by cells to form a 3D fibrillar, protein network with tightly regulated fiber diameter, composition and organization. In addition to providing structural support, the physical and chemical properties of the ECM play an important role in multiple cellular processes including adhesion, differentiation, and apoptosis. In vivo, the ECM is assembled by exposing cryptic self-assembly (fibrillogenesis) sites within proteins. This process varies for different proteins, but fibronectin (FN) fibrillogenesis is well-characterized and serves as a model system for cell-mediated ECM assembly. Specifically, cells use integrin receptors on the cell membrane to bind FN dimers and actomyosin-generated contractile forces to unfold and expose binding sites for assembly into insoluble fibers. This receptor-mediated process enables cells to assemble and organize the ECM from the cellular to tissue scales. Here, we present a method termed surface-initiated assembly (SIA), which recapitulates cell-mediated matrix assembly using protein-surface interactions to unfold ECM proteins and assemble them into insoluble fibers. First, ECM proteins are adsorbed onto a hydrophobic polydimethylsiloxane (PDMS) surface where they partially denature (unfold) and expose cryptic binding domains. The unfolded proteins are then transferred in well-defined micro- and nanopatterns through microcontact printing onto a thermally responsive poly(N-isopropylacrylamide) (PIPAAm) surface. Thermally-triggered dissolution of the PIPAAm leads to final assembly and release of insoluble ECM protein nanofibers and nanostructures with well-defined geometries. Complex architectures are possible by engineering defined patterns on the PDMS stamps used for microcontact printing. In addition to FN, the SIA process can be used with laminin, fibrinogen and collagens type I and IV to create multi-component ECM nanostructures. Thus, SIA can be used to engineer ECM protein-based materials with precise control over the protein composition, fiber geometry and scaffold architecture in order to recapitulate the structure and composition of the ECM in vivo.  相似文献   
3.
Nascent polypeptide-associated complex (NAC) was identified in eukaryotes as the first cytosolic factor that contacts the nascent polypeptide chain emerging from the ribosome. NAC is present as a homodimer in archaea and as a highly conserved heterodimer in eukaryotes. Mutations in NAC cause severe embryonically lethal phenotypes in mice, Drosophila melanogaster, and Caenorhabditis elegans. In the yeast Saccharomyces cerevisiae NAC is quantitatively associated with ribosomes. Here we show that NAC contacts several ribosomal proteins. The N terminus of βNAC, however, specifically contacts near the tunnel exit ribosomal protein Rpl31, which is unique to eukaryotes and archaea. Moreover, the first 23 amino acids of βNAC are sufficient to direct an otherwise non-associated protein to the ribosome. In contrast, αNAC (Egd2p) contacts Rpl17, the direct neighbor of Rpl31 at the ribosomal tunnel exit site. Rpl31 was also recently identified as a contact site for the SRP receptor and the ribosome-associated complex. Furthermore, in Escherichia coli peptide deformylase (PDF) interacts with the corresponding surface area on the eubacterial ribosome. In addition to the previously identified universal adapter site represented by Rpl25/Rpl35, we therefore refer to Rpl31/Rpl17 as a novel universal docking site for ribosome-associated factors on the eukaryotic ribosome.  相似文献   
4.
Summary Ribosomal proteins L4, L5, L20 and L25 have been localized on the surface of the 50S ribosomal subunit of Escherichia coli by immuno-electron microscopy. The two 5S RNA binding proteins L5 and L25 were both located at the central protuberance extending towards its base, at the interface side of the 50S particle. L5 was localized on the side of the central protuberance that faces the L1 protuberance, whereas L25 was localized on the side that faces the L7/L12 stalk. Proteins L4 and L20 were both located at the back of the 50S subunit; L4 was located in the vicinity of proteins L23 and L29, and protein L20 was localized between proteins L17 and L10 and is thus located below the origin of the L7/L12 stalk.  相似文献   
5.
Summary The FhuA protein (formerly TonA) is located in the outer membrane of Escherichia coli K12. Fusions between fhuA and phoA genes were constructed. They determined proteins containing a truncated but still active alkaline phosphatase of constant size and a variable FhuA portion which ranged from 11%–90% of the mature FhuA protein. The fusion sites were nearly randomly distributed along the FhuA protein. The FhuA segments directed the secretion of the truncated alkaline phosphatase across the cytoplasmic membrane. The fusion proteins were proteolytically degraded up to the size of alkaline phosphatase and no longer reacted with anti-FhuA antibodies. The fusion proteins were more stable in lon and pep mutants lacking cytoplasmic protease and peptidases, respectively. The larger fusion proteins above a molecular weight of 64000 dalton were predominantly found in the outer membrane fraction. They were degraded by trypsin when cells were converted to spheroplasts so that trypsin gained access to the periplasm. In contrast, FhuA protein in the outer membrane was largely resistant to trypsin. It is concluded that the larger FhuA-PhoA fusion proteins were associated with, but not properly integrated into, the outer membrane.  相似文献   
6.
A computer-aided search for potential ribosome recognition sequences of mRNAs from tobacco chloroplasts shows that more than 90% of mRNA species contain sequences upstream of the respective initiator codons, which allow base pairing with 3′-terminal sequences of small subunit rRNA. This complementarity in several cases involves 16 S rRNA sequences between the canonical CCUCC sequence and the 3′-terminal stem/loop structure. The distances between potential ribosome recognition sequences and initiator codons can be up to 25 nucleotides which is much greater when compared to the spacing of 7±2 nucleotides observed for the classical Shine-Dalgarno sequences in bacterial mRNAs.  相似文献   
7.
ABSTRACT.
  • 1 Temporal constancy in the structure of grasshopper assemblies (about forty-five species each) from two types of North American grasslands was assessed; one site was followed 25 years and the other 7 years.
  • 2 Densities and relative abundances varied but composition of assemblies based on ranks suggested significant structure when three or more species were included in the analysis.
  • 3 Results compared favourably with other insect herbivore assemblies which have been examined; variability in population change was intermediate along the spectrum of organisms which have been studied.
  相似文献   
8.
F Klink  H Schümann  A Thomsen 《FEBS letters》1983,155(1):173-177
Polyphenylalanine synthesis with ribosomes and two separated, partially purified elongation factors (EF) was measured in cell-free systems from the archaebacteria Thermoplasma acidophilum and Methanococcus vannielii, in an eukaryotic system from rat liver and an eubacterial one with Escherichia coli ribosomes and factors from Thermus thermophilus. By substitution of heterologous EF-2 or EF-G, respectively, for the homologous factors, ribosome specificity was shown to be restricted to factors from the same kingdom. In contrast, EF-1 from T. thermophilus significantly cooperated with ribosomes from T. acidophilum.  相似文献   
9.
It has been known for some time that pokeweed antiviral protein acts by enzymatically inhibiting protein synthesis on eucaryotic ribosome systems. The site of this action is known to be the ribosome itself. In this paper we show that the pokeweed antiviral protein reaction against ribosomes is a strong function of salt concentrations, where 160 mM K+ and 3 mM Mg2+ retards the reaction, while 20 mM K+ and 2 mM Mg2+ allows maximum reaction rate. It is also shown, however, that an unidentified protein in the postribosomal supernatant solution, together with ATP, allows the ribosome to be attacked even in the presence of high salt. Kinetic analysis of the antiviral protein reaction has been carried out under both sets of conditions, and reveals that the turnover number for the enzyme is about 300–400 mol/mol per min. in each case. The Km for ribosomes is 1 μM in the presence of low salt and 0.2 μM at higher salt in the presence of postribosomal supernatant factors plus ATP. The antiviral protein reaction is also shown to be pH dependent and is controlled by a residue with pKa value of approx. 7.0, apparently a histidine. Stoichiometric reaction of the enzyme with iodoacetamide results in a significant loss of antiribosomal activity.  相似文献   
10.
Slowly cooled cells of Streptomyces aureofaciens contained mainly tight-couple ribosomes. Maximum rate of polyphenylalanine synthesis on ribosomes of S. aureofaciens was observed at 40°C, while cultures grew optimally at 28°C. Ribosomes of S. aureofaciens differed from those of E. coli in the amount of poly(U) required for maximum synthetic activity. The polyphenylalanine-synthesizing activity of E. coli ribosomes was about 3-times higher than that of S. aureofaciens ribosomes. The addition of protein S1 of E. coli or the homologous protein from S. aureofaciens had no stimulatory effect on the translation of poly(U). In order to localize alteration(s) of S. aureofaciens ribosomes in the elongation step of polypeptide synthesis we developed an in vitro system derived from purified elongation factors and ribosomal subunits. The enzymatic binding of Phe-tRNA to ribosomes of S. aureofaciens was significantly lower than the binding to ribosomes of E. coli. This alteration was mainly connected with the function of S. aureofaciens 50 S subunits. These subunits were not deficient in their ability to associate with 30 S subunits or with protein SL5 which is homologous to L7/L12 of E. coli.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号